sexta-feira, agosto 11, 2017

Anomalias Genéticas



O que são anomalias genéticas?

Condição médica hereditária causada por uma anormalidade no DNA.

Tipos mais comuns

Síndrome de Down
Doença genética do cromossomo 21 que causa atrasos de desenvolvimento e intelectuais.

Imagem relacionada

Fibrose cística
Transtorno hereditário com risco de vida que danifica os pulmões e o sistema digestivo.

Doença de Huntington
Condição hereditária em que as células nervosas do cérebro se rompem ao longo do 
tempo.

Anemia falciforme
Um grupo de distúrbios que faz com que os glóbulos vermelhos fiquem deformados e quebrem.


Resultado de imagem para Anemia falciforme


Hemofilia
Distúrbio em que o sangue não coagula normalmente.

Talassemia
Distúrbio sanguíneo que envolve menores quantidade de proteína transportadoras de oxigênio do que o normal.

  • EXISTEM MAIS TIPOS DE ANOMALIAS, RARAS. ESSES CITADOS ACIMA SÃO ALGUNS EXEMPLOS DAS MAIS COMUNS.

Hipertricose (RARA)
 também conhecida como a síndrome do lobisomem é um termo médico usado para descrever uma doença extremamente rara que causa o excesso de pêlos no corpo 
humano.
Resultado de imagem para SINDROME DO LOBISOMEM




  • SEGUE ABAIXO VÍDEO EXPLICATIVO SOBRE ALGUMAS DAS ANOMALIAS GENÉTICAS.




Genética, Leis de Mendel

Genética

Desde os tempos mais remotos, o homem tomou consciência da importância do macho e da fêmea na geração de seres da mesma espécie, e que características como altura, cor da pele, etc, eram transmitidas dos pais para os descendentes. Assim, com certeza, uma cadela quando cruzar com um cão, irá originar um filhote com características de um cão e nunca de um gato. Mas por quê?

Mendel, o iniciador da genética

Gregor Mendel nasceu em 1822, em Heinzendorf, na Áustria. Era filho de pequenos fazendeiros e, apesar de bom aluno, teve de superar dificuldades financeiras para conseguir estudar. Em 1843, ingressou como noviço no mosteiro de agostiniano da cidade de Brünn, hoje Brno, na atual República Tcheca.
 
Após ter sido ordenado monge, em 1847, Mendel ingressou na Universidade de Viena, onde estudou matemática e ciências por dois anos. Ele queria ser professor de ciências naturais, mas foi mal sucedido nos exames.
De volta a Brünn, onde passou o resto da vida, Mendel continuou interessado em ciências. Fez estudos meteorológicos, estudou a vida das abelhas e cultivou plantas, tendo produzido novas variedades de maças e peras. Entre 1856 e 1865, realizou uma série de experimentos com ervilhas, com o objetivo de entender como as características hereditárias eram transmitidas de pais para filhos.
Em 8 de março de 1865, Mendel apresentou um trabalho à Sociedade de História Natural de Brünn, no qual enunciava as suas leis de hereditariedade, deduzidas das experiências com as ervilhas. Publicado em 1866, com data de 1865, esse trabalho permaneu praticamente desconhecido do mundo científico até o início do século XX. Pelo que se sabe, poucos leram a publicação, e os que leram não conseguiram compreender sua enorme importância para a Biologia. As leis de Mendel foram redescobertas apenas em 1900, por três pesquisadores que trabalhavam independentemente.
Mendel morreu em Brünn, em 1884. Os últimos anos de sua vida foram amargos e cheios de desapontamento. Os trabalhos administrativos do mosteiro o impediam de se dedicar exclusivamente à ciência, e o monge se sentia frustrado por não ter obtido qualquer reconhecimento público pela sua importante descoberta. Hoje Mendel é tido como uma das figuras mais importantes no mundo científico, sendo considerado o “pai” da Genética. No mosteiro onde viveu existe um monumento em sua homenagem, e os jardins onde foram realizados os célebres experimentos com ervilhas até hoje são conservados.

Os experimentos de Mendel

A escolha da planta

A ervilha é uma planta herbácea leguminosa que pertence ao mesmo grupo do feijão e da soja. Na reprodução, surgem vagens contendo sementes, as ervilhas. Sua escolha como material de experiência não foi casual: uma planta fácil de cultivar, de ciclo reprodutivo curto e que produz muitas sementes.
Desde os tempos de Mendel, existiam muitas variedades disponíveis, dotadas de características de fácil comparação. Por exemplo, a variedade que flores púrpuras podia ser comparada com a que produzia flores brancas; a que produzia sementes lisas poderia ser comparada com a que produzia sementes rugosas, e assim por diante.
Outra vantagem dessas plantas é que estame e pistilo, os componentes envolvidos na reprodução sexuada do vegetal, ficam encerrados no interior da mesma flor, protegidas pelas pétalas. Isso favorece a autopolinização e, por extensão, a autofecundação, formando descendentes com as mesmas características das plantas genitoras.
A partir da autopolinização, Mendel produziu e separou diversas linhagens puras de ervilhas para as características que ele pretendia estudar. Por exemplo, para cor de flor, plantas de flores de cor de púrpura sempre produziam como descendentes plantas de flores púrpuras, o mesmo ocorrendo com o cruzamento de plantas cujas flores eram brancas. Mendel estudou sete características nas plantas de ervilhas: cor da flor, posição da flor no caule, cor da semente, aspecto externo da semente, forma da vagem, cor da vagem e altura da planta.

Os cruzamentos

Depois de obter linhagens puras, Mendel efetuou um cruzamento diferente. Cortou os estames de uma flor proveniente de semente verde e depois depositou, nos estigmas dessa flor, pólen de uma planta proveniente de semente amarela.
Efetuou, então, artificialmente, uma polinização cruzada: pólen de uma planta que produzia apenas semente amarela foi depositado no estigma de outra planta que só produzia semente verde, ou seja, cruzou duas plantas puras entre si. Essas duas plantas foram consideradas como a geração parental (P), isto é, a dos genitores.
 
Após repetir o mesmo procedimento diversas vezes, Mendel verificou que todas as sementes originadas desses cruzamentos eram amarelas – a cor verde havia aparentemente “desaparecido” nos descendentes híbridos (resultantes do cruzamento das plantas), que Mendel chamou de F1(primeira geração filial). Concluiu, então, que a cor amarela “dominava” a cor verde. Chamou o caráter cor amarela da semente de dominante e o verde de recessivo.
A seguir, Mendel fez germinar as sementes obtidas em F1 até surgirem as plantas e as flores. Deixou que se autofertilizassem e aí houve a surpresa: a cor verde das sementes reapareceu na F2 (segunda geração filial), só eu em proporção menor que as de cor amarela: surgiram 6.022 sementes amarelas para 2.001 verdes, o que conduzia a proporção 3:1. Concluiu que na verdade, a cor verde das sementes não havia “desaparecido” nas sementes da geração F1. O que ocorreu é que ela não tinha se manifestado, uma vez que, sendo uma caráter recessivo, era apenas “dominado” (nas palavras de Mendel) pela cor amarela. Mendel concluiu que a cor das sementes era determinada por dois fatores, cada um determinando o surgimento de uma cor, amarela ou verde.
Era necessário definir uma simbologia para representar esses fatores: escolheu a inicial do caráter recessivo. Assim, a letra v (inicial de verde), minúscula, simbolizava o fator recessivo. Assim, a letra v (inicial de verde), minúscula, simbolizava o fator recessivo – para cor verse – e a letra V, maiúscula, o fator dominante – para cor amarela.
VV
vv
Vv
Semente amarela pura
Semente verde pura
Semente amarela híbrida

Persistia, porém, uma dúvida: Como explicar o desaparecimento da cor verde na geração F1 e o seu reaparecimento na geração F2?
A resposta surgiu a partir do conhecimento de que cada um dos fatores se separava durante a formação das células reprodutoras, os gametas. Dessa forma, podemos entender como o material hereditário passa de uma geração para a outra. Acompanhe nos esquemas abaixo os procedimentos adorados por Mendel com relação ao caráter cor da semente em ervilhas.
Resultado: em F2, para cada três sementes amarelas, Mendel obteve uma semente de cor verde. Repetindo o procedimento para outras seis características estudadas nas plantas de ervilha, sempre eram obtidos os mesmos resultados em F2, ou seja a proporção de três expressões dominantes para uma recessiva.

Johann Gregor Mendel



Gregor Mendel (1822-1884) foi um biólogo e botânico austríaco. Descobriu as leis da genética, que mudaram o rumo da biologia.
Gregor Mendel (1822-1884) nasceu em Heinzendorf, na parte da Silésia, que pertencia a Áustria. Filho de camponeses, observava e estudava as plantas. Sua vocação científica desenvolveu-se paralela à vocação religiosa. Aos 11 anos, entrou para a escola. Estudou filosofia em Ormutz.
Em 1843 entrou para o Mosteiro Agostiniano de São Tomás, em Brno, antigo Império Austro-Húngaro, hoje República Tcheca, onde foi ordenado padre, com o nome de Gregor. Em 1851 foi enviado à Universidade de Viena, por seu superior, para desenvolver sua vocação pela ciência. Passou três anos se dedicando ao estudo da biologia, matemática e química. Em 1853, de volta à província, divide o tempo entre lecionar ciências naturais na Escola Superior de Brno.
Em 1862, junto com alguns colegas do magistério, fundou a Sociedade de Ciências Naturais. Dedicou-se ao estudo do cruzamento de várias espécies de plantas, entre elas, feijão, ervilha e chicória. Estudou também animais, como abelhas e camondongos. O mecanismo interno que determina a hereditariedade constituía um dos mais árduos problemas da Biologia. Mendel fez descobertas que mudaram o rumo da Biologia e posteriormente serviram de base a um brilhante conjunto de leis da Genética.
Os trabalhos de Mendel sobre hereditariedade versam principalmente sobre os híbridos. Estudando grande número de espécies, de várias gerações, ele estabeleceu certos fatos que projetaram nova luz nas leis da herança. Suas pesquisas conduziram ao descobrimento das primeiras leis quantitativas da Biologia.
As leis de Mendel foram extremamente importantes para a evolução das ciências: a lei da dominância, da disjunção, segundo a qual as características dos ascendentes se dissociam nas gerações seguintes, segundo proporções fixas. E a lei da independência dos caracteres. Apesar da paixão de Mendel por botânica e zoologia, por volta de 1868, seus deveres administrativos no convento cresceram tanto, que ele abandonou por completo os trabalhos científicos.
Embora representasse um grande fato, os trabalhos escritos de Mendel passaram despercebidos até 1900, quando outros cientistas como o botânico holandês Hugo de Vries, conseguiu obter os mesmo resultados, embora Mendel tenha feito as mesmas descobertas 34 anos antes.
Johann Gregor Mendel faleceu em Brno, República Tcheca, vítima de doença renal, no dia 6 de janeiro de 1884.
Resultado de imagem para historia da vida de mendel

Desenvolvimento Embrionario Animal

Logo após a fecundação de um gameta feminino (óvulo) por um gameta masculino (espermatozóide), forma-se o ovo ou zigoto.


Tipos de ovos
Os ovos dos animais possuem um material nutritivo denominado vitelo, cuja concentração e distribuição diferem conforme a espécie. Podemos classificar os ovos em isolécitos, mesolécitos, megalécitos e centrolécitos.

Isolécitos ou oligolécitos são ovos que contêm pequena quantidade de vitelo uniformemente distribuído pelo citoplasma. São característicos de poríferos, equinodermos, protocordados e mamíferos (nestes são chamados de alécitos).

Mesolécitos ou heterolécitos são ovos que apresentam cerca da metade do volume citoplasmático (pólo vegetativo) ocupado pelo vitelo; o núcleo situa-se no pólo oposto (pólo animal). São característicos dos platelmintos, anelídeos, moluscos, anfíbios e algumas espécies de peixes.

Megalécitos ou telolécitos são ovos nos quais a quantidade de vitelo é tão grande que ocupa quase todo o citoplasma (pólo vegetativo), enquanto que o núcleo ocupa um espaço mínimo na periferia (pólo animal ou disco germinativo). São característicos de aves, répteis e algumas espécies de peixes.

Centrolécitos são ovos nos quais o núcleo é central, envolvido pelo citoplasma. São característicos dos artrópodes.



Clivagem ou Segmentação
Após a fecundação, a célula-ovo, ovo ou zigoto recém formado inicia um processo de sucessivas divisões mitóticas, a que chamamos de clivagem ou segmentação, para formar o embrião, que passa por uma série de modificações até que se forma um organismo completamente constituído.

As primeiras células que se originam das divisões mitóticas do ovo, denominam-se blastômeros.



A quantidade e a distribuição do vitelo nos diferentes tipos de ovos condiciona a existência de diferentes tipos de segmentação.
Total ou holoblástica:

Igual – ovos isolécitos

Desigual – ovos mesolécitos



Parcial ou meroblástica:
Discoidal – ovos megalécitos

Superficial – ovos centrolécitos

A clivagem é holoblástica quando o ovo se segmenta completamente. 
Quando os blastômeros formados são todos do mesmo tamanho é chamada de igual.

Quando se originam blastômeros menores (micrômeros) e blastômeros maiores (macrômeros) é chamada de desigual .



A clivagem é meroblástica quando o ovo se segmenta parcialmente. 
É discoidal quando ocorre somente no pólo animal ou disco germinativo. 

É superficial quando ocorre na região periférica do ovo.



As Etapas da Segmentação
Após a fecundação, o ovo começa a se dividir. 

As divisões prosseguem até formar-se um aglomerado maciço de células denominado mórula (64 células). Apesar do maior número de células, a mórula tem um volume quase igual ao do zigoto que a originou.

Em seguida, as células da mórula vão-se posicionando na porção periférica enquanto secretam um líquido que se instala no centro, ocupando uma cavidade. O estágio embrionário nessa fase denomina-se blástula. É nesse estágio de desenvolvimento que, nos seres humanos, o ovo chega à cavidade uterina. Geralmente por volta do sexto dia após a fecundação.

A seguir ocorre a gastrulação ou formação da gástrula. Um dos pólos se dobra para dentro formando duas camadas de células: o ectoderma e o endoderma. Nos espongiários e celenterados esse é o final do estágio embrionário.

Nos seres mais evoluídos, a gástrula evolui para um novo estágio. Surge um terceiro folheto embrionário, o mesoderma.

Nos animais vertebrados, ocorre a neurulação ou formação da nêurula, onde se formará o tubo neural e a notocorda que darão origem ao sistema nervoso central e à coluna vertebral, respectivamente. 

Resultado de imagem para ovulos da embriologia animal

Imagem relacionada

Desenvolvimento Embrionário Humano


O zigoto é portador do material genético fornecido pelo espermatozóide e pelo óvulo. Um vez formado o zigoto irá se dividir muitas vezes por mitose até originar um novo indivíduo. Assim, todas as células que formam o corpo de um indivíduo possuem o mesmo patrimônio genético que existia no zigoto.Apesar disso, ao longo do desenvolvimento embrionário as células passam por um processo de diferenciação celular em que alguns genes são “ativados” e outros são “desativados”, sendo que somente os “ativados” coordenam as funções das células.
Surgem dessa maneira tipos celulares com formatos e funções distintos, que se organizam em tecidos. Conjuntos de tecidos reunidos formam os órgãos. Os grupos de órgãos formam os sistemas que, por sua vez, formam o organismo.

Fases do desenvolvimento embrionário


Os animais apresentam grande diversidade de desenvolvimento embrionário, mas, de modo geral, em praticamente todos ocorrem três fases consecutivas: segmentação, gastrulação e organogênese.
Na segmentação, mesmo com o aumento do número de células, praticamente não há aumento do volume total do embrião, pois as divisões celulares são muito rápidas e as células não têm tempo para crescer.
Na fase seguinte, que é a gastrulação, o aumento do número de células é acompanhada do aumento do volume total. Inicia-se nessa fase a diferenciação celular, ocorrendo a formação dos folhetos germinativos ou folhetos embrionários, que darão origem aos tecidos do indivíduo.
No estágio seguinte, que é a organogênese, ocorre a diferenciação dos órgãos.
Segmentação
As divisões que ocorrem durante a segmentação denominam-se clivagens, e as células que se formam são chamadas blastômeros.
No Reino Animal, a diferença na quantidade e na distribuição do vitelo no ovo determina diferenças na segmentação, menor a velocidade de divisão. Em função disso, podemos considerar dois tipos básicos de segmentação:
  • holoblástica ou total que ocorre no zigoto todo;


  • meroblástica ou parcial, que ocorre só em parte do ovo.



Segmentação holoblástica

A segmentação holoblástica ocorre nos alécitos, nos isolécitos (ou oligolécitos) e nos heterolécitos, e pode ser subdividida em três tipos, com base no tamanho das células que se formam a partir da terceira clivagem (quando muda o plano de divisão celular):
  • holoblástica igual, na qual se formam, com a terceira clivagem, oito blastômeros iguais; ocorre nos ovos alécitos e em alguns oligolécitos;


  • holoblástica desigual, na qual se formam, com a terceira clivagem, blastômeros de tamanhos diferentes (quatro menores: micrômeros; e quatro maiores: macrômeros); Ocorre em todos os ovos heterolécitos e em alguns oligolécitos;


  • holoblásticas subigual, um tipo de segmentação desigual em que os blastômeros não diferem muito entre si quanto ao tamanho, ocorre em alguns ovos isolécitos.

Segmentação meroblástica

Devido à diferença na distribuição do vitelo, existem dois tipos básicos de segmentação meroblástica: a discoidal e a superficial.
Na segmentação meroblástica discoidal, as divisões ocorrem apenas na região da cicatrícula (região da célula sem vitelo), formando-se um disco de células sobre a massa do vitelo. Esse tipo de segmentação ocorre nos ovos telolécitos.



A segmentação meroblástica superficial ocorre nos ovos centrolécitos. As células embrionárias ficam dispostas na superfície do ovo.


Fases da segmentação
Embora existam diferentes tipos de segmentação, eles normalmente se realizam segundo duas fases:
  • mórula, em que se forma um maciço celular com poucas células;
  • blástula, em que é aumentado o número de células e se forma uma cavidade interna cheia de líquido.



A cavidade central que se observa na blástula recebe o nome de blastocele (cele = cavidade) e é cheia de líquido sintetizado pelas células que formam os seus limites.
Nos ovos isolécitos e nos heterolécitos a blastocele é bem desenvolvida.
Na blástula originada da segmentação de ovos telolécitos, não se observa a verdadeira blastocele (cele = cavidade) e é cheia de líquido sintetizado pelas células que formam os seus limites.
Nos ovos isolécitos e nos heterolécitos a blastocele é bem desenvolvida.
Na blástula originada da segmentação de ovos telolécitos, não se observa a verdadeira blastocele, pois a cavidade formada não é inteiramente delimitada pelos blastômeros. Essa cavidade é delimitada em parte pelos blastômeros e em parte pelo vitelo. Nesse caso, a cavidade formada recebe o nome de cavidade subgerminal, que também é preenchida por líquido sintetizado pelas células. A blástula que se forma a partir da segmentação dos ovos telolécitos recebe o nome de discoblástula.

Gastrulação
Para falarmos da gastrulação, vamos tomar como exemplo o que ocorre em animais cordados, representados pelo anfioxo e pelas rãs.
Os cordados são animais que possuem notocorda, um bastonete flexível que fica no dorso do embrião. A notocorda persiste no adulto de alguns animais cordados, como é o caso do anfioxo. Nos animais vertebrados, excluindo alguns peixes, a notocorda regride totalmente ou quase totalmente e a coluna vertebral se desenvolve a partir da mesoderma.

anfioxo é um animal de cerca de 6 cm de comprimento que vive enterrado na areia em águas rasas do ambiente marinho, deixando para fora apenas a região anterior do corpo. Esses animais têm sexos separados e a fecundação é externa.
ovo do anfioxo é oligolécito e a sua segmentação é total subigual. A gastrulação ocorre por um processo denominado invaginação dos blastômeros para o interior da blastocele, como se um dedo empurrasse a parede de uma bexiga. A blastocele se reduz e chega a desaparecer. No ponto de invaginação surge um orifício denominado blastóporo; a cavidade interna que se forma é o intestino primitivo ou arquêntero.

Na gastrulação, diferenciam-se os folhetos germinativos ou embrionários, que darão origem a todos os tecidos e órgãos. Esses folhetos são: ectoderma (o mais externo), mesoderma (o intermediário) e endoderma (o mais interno).


Os animais que possuem três folhetos germinativos são chamados triblásticos ou triploblásticos, como é o caso dos cordados. Existem entretanto, animais que possuem apenas dois folhetos germinativos: o ectoderma e o endoderma. Esses animais são chamados diblásticos ou diploblásticos, como e o caso dos cnidários.
O esquema acima descreve de forma simplificada a gastrulação em anfioxo. Neste caso, a camada interna que reveste diretamente o arquêntero é chamada mesentoderma e dará origem, logo a seguir ao mesoderma e ao endoderma. (Há quem considere o mesentoderma como endoderma e o mesoderma formado a partir do endoderma.)

Nas rãs a fecundação é externa, os óvulos são heterolécitos e a segmentação é total desigual. Os óvulos possuem um envoltório gelatinoso que desseca em contato com o ar. Assim, todo o desenvolvimento embrionário ocorre na água. Forma-se uma larva aquática, o girino que sofre metamorfose, originando o adulto. Fala-se, nesses casos, em desenvolvimento indireto, pois há uma fase larval. Quando a fase larval não está presente, fala-se em desenvolvimento direto.

A gastrulação das rãs ocorre por invaginação e também por epibolia. Por invaginação forma-se uma fenda: o blastóporo. Por epibolia os micrômeros passam a se dividir rapidamente e acabam por recobrir os macrômeros. Os micrômeros insinuam-se primeiramente pelo lábio ventral. O blastóporo adquire o aspecto de um círculo. Os micrômeros insinuam-se para dentro da blastocele, delimitando o arquêntero. Ocorre também a diferenciação dos três folhetos germinativos: o ectoderma, o mesoderma e o endoderma.

Assim, na gastrulação das rãs, além de o embrião aumentar de volume, três outras características são fundamentais:
  • formação dos folhetos embrionários ou germinativos, que darão origem a todos os tecidos e órgãos;
  • formação do arquêntero ou intestino primitivo;
  • formação do blastóporo, orifício de comunicação do arquêntero com o exterior.
Protostomados e deuterostomados

O blastóporo pode dar origem à boca ou ao ânus. Quando dá origem apenas à boca ou tanto à boca quanto ao ânus, os animais são chamados de protostômios (proto = primeiro). É o caso dos vermes, dos moluscos e dos artrópodes.
Quando o blastóporo dá origem ao ânus os animais são chamados de deuterostômios (deutero = posterior). É o caso dos equinodermos e dos cordados.

Organogênese em anfioxo

A terceira fase do desenvolvimento embrionário é a organogênese, que se caracteriza pela diferenciação de órgãos a partir dos folhetos embrionários formados na gastrulação. O esquema seguinte representa a fase inicial da organogênese: a neurulação. Após a neurulação, os folhetos embrionários, continuam a se diferenciar, originando os tecidos especializados do adulto.


Do ectoderma diferencia-se o tubo neural, que apresenta no seu interior o canal neural. O endoderma dá origem ao tubo digestório. O mesoderma dá origem aos somitos e à notocorda. Os somitos são blocos celulares dispostos lateralmente no dorso do embrião, e a notocorda é uma estrutura maciça localizada logo abaixo do tubo neural.
O mesoderma delimita cavidades denominadas celomas.

Aneuploidias: O Cariótipo Alterado.

Fenômenos em que ocorre uma variação numérica de um ou mais cromossomos no cariótipo do indivíduos são chamados de aneuploidias. Na perda de...